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Abstract: 
 Throughout the semester, structural problems have been solved in the perspective of finite 
element analysis. Each beam, axial member, torsional member, and shear panel is broken up into 
smaller pieces to be analyzed separately. This project comes in two parts. Firstly, the creation of original 
FEA software is to be accomplished. Using Matlab, a general code will be written to solve any manner of 
simple beam problems. Secondly, Comsol will be used to analyze a full wing under several loading 
conditions, some of which combine bending and torsion. 
 
Intro: 
 To truly gain an understanding of finite element analysis, a small program will be written to 
solve beam problems. The code should be general enough to solve a wide array of loading cases and 
changes in geometry or material properties. To do this, each beam will be divided into sections by the 
user. There should be a section for each load and whenever there is a change in beam geometry or 
composition. In addition, boundary conditions will be input by the user. 
 With the input information, the program can solve for nodal displacements for the entire beam. 
In addition, it can produce a plot for displacement, bending moment, and shear force as a function of 
the axial position. Examples of the finished program at work are included. 
 After grasping the basics of FEA, a more complex problem will be approached - a wing, to be 
specific. Comsol, a fully developed finite element program, is used to solve this problem. Using the 
provided schematics for the wing, a finite element model of the wing is produced in Comsol.  With the 
completed model, the response can be computed for any loading case. For this project, the model will 
be subjected vertical loads at different locations along the free end. With this data, the shear center can 
be located. Also, the wing will be tested under a distributed “drag,” load on the leading edge. This case 
will be tested with a variety of mesh densities to observe its effect on the results. 
 
Theory: 
 Finite element analysis evolved 
from the need to solve complex 
structural analysis problems. It is a 
numerical method that involves 
breaking up a structure into elements, 
and computing its response to a load as 
if each element was connected to its 
neighbors with a spring of certain 
stiffness. Each element has nodes at its 
boundaries. FEA finds the displacement 
of each node, depending on the force 
applied to the structure.  

The first step is to discretize the structure into 
elements. Generally, more elements correlate to a more 
accurate solution. The second step is to determine the 
stiffness of each element. This is characterized by the 
geometry of the element and the material it is composed of. These stiffness values are then assembled 
into a global stiffness matrix. Each location in the global stiffness matrix corresponds to a node that lies 



between two elements. In this manner, the displacements of each node can be solved for 
simultaneously. The response of the structure is proportional to the applied force by its stiffness. 
Therefore, after assembly is finished, the displacements of the nodes can be found by solving [𝑘]{𝑞} =
{𝑓}, where [k] is the global stiffness matrix, {q} is a vector of nodal displacements, and {f} is a vector of 
nodal forces (or equivalent distributed loads). The {q} vector may also include the slope at a node if a 
beam is being analyzed. 

The last step is referred to as post-processing. This step includes calculating the stresses and 
strains from the displacement information and failure analysis. Upon reaching this step, the goal of the 
preceding calculations has been achieved. Several questions about the structure can be answered at this 
point.  

“How much does the structure deform?” 
”How much stress is it under? “ 
“Will the structure fail under this loading?” 

  
 The last question listed is inarguably the most important question, even more so when the 
structure is a building, a car, or an airplane.  The lives of passengers and inhabitants depend on a 
structure’s ability to withstand a load without failure. 
 
Results: 
 As stated above, the first part of this project involved writing some Matlab code that can be 
used to solve beam problems with a finite element analysis approach. The code itself is included in 
Appendix I.  The code takes the information about the beam, including how it is to be discretized, the 
applied forces, and the boundary conditions, and solves for the shear force, bending moment, and 
displacement. The following plots show the results from two different beam problems. 
 For the first test of the code, a simple cantilevered beam is used. It is fixed at one end, made of 
steel, has a square cross section of .1m x .1m, and is subjected to a transverse loading of 10 Newtons at 
the free end. 
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 The second problem used to test the code has, instead of a concentrated load at the end, a 
distributed load on the last of five sections. Each section has the same length of 1m. The distributed load 
is 20 N/m, and the last section also has double the moment of inertia of the rest of the beam. 
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 The second portion of the project is, of course, using Comsol to solve for the response of a wing 
under various loading conditions. The numerous figures show displacement, rotation, and von misses 
stress for each of loading cases. In each case, the wing is subjected to a 50lb vertical load at one of seven 
evenly spaced points on the end of the wing. 
 
Point 1 Fine 

 

 



 
 

 
Total displacement (m): 3.84197e-5, 3.75196e-5 
Strain tensor (global), xx component (1): -5.97883e-6, 6.39622e-6 
Strain tensor (global), xy component (1): -1.19307e-6, 1.3938e-6 
   
   
 



Point 1 normal 

 

 



 

 
Total displacement (m): 3.19711e-5, 3.06554e-5 
Strain tensor (global), xx component (1): -5.76127e-6, 5.46903e-6 
Strain tensor (global), xy component (1): -9.67824e-7, 1.17867e-6 
   
   
 
 



Point 2 Fine 

 
 

 
 



 
Total displacement (m): 3.82577e-5, 3.74741e-5 
Strain tensor (global), xx component (1): -5.97544e-6, 6.3953e-6 
Strain tensor (global), xy component (1): -8.89007e-7, 1.089e-6 
   
   
Point 2 Normal 

 



 

 
Total displacement (m): 3.17938e-5, 3.0524e-5 
Strain tensor (global), xx component (1): -5.77188e-6, 5.47604e-6 
Strain tensor (global), xy component (1): -6.68779e-7, 8.79419e-7 
 
 
 
 



Point 3 Fine 

 

 



 
Total displacement (m): 3.17938e-5, 3.0524e-5 
Strain tensor (global), xx component (1): -5.77188e-6, 5.47604e-6 
Strain tensor (global), xy component (1): -6.68779e-7, 8.79419e-7 
 
Point 3 normal 
 

 



 

 
Total displacement (m): 3.16107e-5, 3.04e-5 
Strain tensor (global), xx component (1): -5.78263e-6, 5.48229e-6 
Strain tensor (global), xy component (1): -3.70139e-7, 5.80354e-7 
 
 
 
 



Point 4 Fine 

 

 



 
Total displacement (m): 3.80335e-5, 3.73504e-5 
 Strain tensor (global), xx component (1): -5.97811e-6, 6.39446e-6 
Strain tensor (global), xy component (1): -2.80133e-7, 4.82898e-7 
 
Point 4 Normal 

 



 

 
Total displacement (m): 3.14376e-5, 3.02757e-5 
Strain tensor (global), xx component (1): -5.79569e-6, 5.48693e-6 
Strain tensor (global), xy component (1): -7.03952e-8, 2.80856e-7 
 
 
 
 



Point 5 Fine 

 

 



 
Total displacement (m): 3.78313e-5, 3.72558e-5 
Strain tensor (global), xx component (1): -5.9802e-6, 6.39588e-6 
Strain tensor (global), xy component (1): 1.78257e-8, 1.80655e-7 
 
Point 5 Normal 

 



 

 
Total displacement (m): 3.12634e-5, 3.0148e-5 
Strain tensor (global), xx component (1): -5.80885e-6, 5.49184e-6 
 Strain tensor (global), xy component (1): 2.28841e-7, -1.8784e-8 
 
 
 
 



Point 6 Fine 

 

 



 
Total displacement (m): 3.76108e-5, 3.71476e-5 
Strain tensor (global), xx component (1): -5.98193e-6, 6.39666e-6 
Strain tensor (global), xy component (1): 3.12404e-7, -1.19302e-7 
 
Point 6 Normal 

 



 

 
Total displacement (m): 3.10793e-5, 3.00078e-5 
Strain tensor (global), xx component (1): -5.82037e-6, 5.50109e-6 
Strain tensor (global), xy component (1): 5.26396e-7, -3.19371e-7 
 
 
 
 
 
 
 



Point 7 Fine 

 

 



 
Total displacement (m): 3.74119e-5, 3.70275e-5 
Strain tensor (global), xx component (1): -5.9825e-6, 6.3946e-6 
Strain tensor (global), xy component (1): 6.02816e-7, -4.13951e-7 
   
   
Point 7 Normal 

 



 

 
Total displacement (m): 3.08948e-5, 2.98539e-5 
Strain tensor (global), xx component (1): -5.83152e-6, 5.51094e-6 
Strain tensor (global), xy component (1): 8.22676e-7, -6.20049e-7 
   
   
 
 
 
 
 



The next 12 figures show the wing under a drag load. The same analysis is done for a range of 
mesh densities in order to observe its effect on the data. 
Faceload Ext C 

 

 



 
Total displacement (m): 2.47675e-4, 2.47245e-4  
Strain tensor (global), xy component (1): 7.67168e-5, 7.75789e-5  
Strain tensor (global), xx component (1): 7.67168e-5, 5.74752e-5 
 
Normal 

 



 

 
Total displacement (m): 3.1711e-4, 3.17734e-4 
 Strain tensor (global), xy component (1): -9.01525e-6, -9.69214e-6 
Strain tensor (global), xy component (1): 7.17233e-5, 7.32779e-5 
 
 
 
 



Fine 

 

 



 
 
Total displacement (m): 3.1711e-4, 3.17734e-4 
Strain tensor (global), xx component (1): -9.01525e-6, -9.69214e-6 
Strain tensor (global), xy component (1): 7.17233e-5, 7.32779e-5 
 
Ext Fine 

 



 

 
Total displacement (m): 3.36674e-4, 3.36628e-4 
Strain tensor (global), xx component (1): -4.18558e-5, -5.89261e-5 
Strain tensor (global), xy component (1): 8.34265e-5, 8.33791e-5 
     
   
   
   



   
Using data from virtual strain gauges strategically placed on the model in Comsol, we can find 

the shear produced in each of the preceding loading cases and plot the data. This graphs shows shear 
stress plotted versus load location on the end of the wing. With this data, we can find the shear center 
of the wing simply by finding the x-intercept of this plot. The code that produced this and all of the 
remaining plots will be included in appendix 2. 
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These plots show the axial stress distribution under the drag loading case for different mesh densities. 
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Finally, these plots show max displacement and stress for increasing mesh density. It is interesting to 
note how the values change with mesh density. 
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Discussion: 
 Both parts of this project, writing FEA code for beam problems and using fully developed, 
commercially available software to solve a problem came with their own set of challenges and nuances. 
The most difficult part of writing the beam code was allowing for the description of a beam in terms of 
sections. It was important for the code to be general enough to solve any beam problem with any 
number of loading conditions or boundary conditions, so the code had to be able to deal with all of that 
information, even at different resolutions with different numbers of sections. 
 Learning the basics of Comsol allowed this problem to be tackled without too many issues. The 
biggest challenge was correctly defining the wing geometry in the graphics window. After this was 
accomplished, the wing response could be calculated for any loading case. It is easy to imagine how 
useful FEA can be in a wide variety of structural design applications. 
 
Conclusion: 
 Finite element analysis is an effective numerical method for solving differential equations for 
structural problems. Through writing code specifically for beam problems and using already developed, 
commercial level FEA software to solve a relevant problem, a greater understanding and appreciation 
for structural analysis, the finite element method, and computer science has been developed. 
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Appendix I 
%Jimmie Rush,Joshua Wheeler,Shane Chambry AE458 proj 
%Author Jimmie Rush 
clear;clc;close all; 

  
%% user inputs 
NumSec=5; %number of beam sections 

  
E_Sec=[2 2 2 1 1];% E for each sections 
I_Sec=[1 1 1 1 1]; %I for each section 
L_Sec=[1 1 1 1 1]; %Length of each section 

  

  
NDofCondAtSecPoint=[1,1,0,0,0,0,0,0,1,0,0,0]; %section point degree of 

freedom restrictions 1cond 0 dont: NumSecPoints*2 

  
MagUnifLoadStart=[-5 0 0 0 0]; %Magnitude of uniform load at start of section 
ConcLoad=[ 0 0 0 0 -10 0 0 20 0 0 0 0]; %concetrated loads/couples at each 

section point 

  
NumElePerSec=[5,5,5,4,4]; %number of elements in eachc section 
%% 
NumSecPoints=NumSec+1; %number of section points 
EI_Sec=E_Sec.*I_Sec; 

  
Ne=0; 
for i=1:1:NumSec 
    L(i)=L_Sec(i)/NumElePerSec(i); %length of elements in section 
    Ne=Ne+NumElePerSec(i); %total element count 
end 

  
SecCount=1; 
EleCount=0; 
for i=1:1:Ne 
    EleCount=EleCount+1; 
    EleSecId(i)=SecCount; %section identifier for each element 
    if(EleCount==NumElePerSec(SecCount)) 
        SecCount=SecCount+1; 
        EleCount=0; 
    end 
end 

     

     
Nn=Ne+1; % number of total nodes; 

  
NodeX(1)=0; %location of first node 
for i=1:1:Ne; 
    NodeX(i+1)=NodeX(i)+L(EleSecId(i)); %location of all nodes 
end 

  

  
for ele=1:1:Ne 
    sec=EleSecId(ele); 
    %k matrix for each element 



    K{ele}=(EI_Sec(sec)/L(sec)^3)*[12 6*L(sec) -12 6*L(sec); 6*L(sec)... 
    4*L(sec)^2 -(6*L(sec)) 2*L(sec)^2;-12 -6*L(sec) 12 -6*L(sec);6*L(sec)... 
    2*L(sec)^2 -6*L(sec) 4*L(sec)^2];   
    %distributed load for section 
    p=MagUnifLoadStart(sec); 
    %nodal forces for distributed load for each element 
    Fdist{ele}=[p*L(sec)/2;p*L(sec)^2/12;p*L(sec)/2;-p*L(sec)^2/12]; 
end 

  

  

  

  
Kglobal=zeros(Ne*2+2); 
FdistGlobal=zeros(Ne*2+2,1); 
x=1;y=1;j=1; 
for j=1:1:Ne 
Kglobal(x:x+3,y:y+3)=Kglobal(x:x+3,x:x+3)+K{j}; 

  
FdistGlobal(x:x+3)=FdistGlobal(x:x+3)+Fdist{j}; 

  
x=x+2;y=y+2; 
end 

  

  

%concentrated force on nodes     
ConcForce=zeros(Nn*2,1);DofNodal=zeros(1,Nn*2); 
j=1; 
i=1; 
for n=1:1:NumSec 
    ConcForce(i:i+1,1)=ConcLoad(j:j+1); %nodal conc force matrix 
    DofNodal(i:i+1)=NDofCondAtSecPoint(j:j+1); %nodal dof matrix 
    i=i+NumElePerSec(n)*2; 
    j=j+2; 
end 
ConcForce(i:i+1,1)=ConcLoad(j:j+1); 
DofNodal(i:i+1)=NDofCondAtSecPoint(j:j+1); 

  

  

  
ForceTotal=ConcForce+FdistGlobal; 
%% condensing 
N_RDOF=0; 
count=1; 
for i=1:Nn*2 

     
    if DofNodal(i)==0 
    Dof_cond(count)=i; 
    count=count+1; 
    end 

     
    if DofNodal(i)==1 
        N_RDOF=N_RDOF+1; 
    end 
end 



  
Kcondensed=zeros(Nn*2-N_RDOF); %condensed stiffness matrix initialized 
Fcondensed=zeros(Nn*2-N_RDOF,1); %condensed Force matrix initialized 

  

  
for x=1:Nn*2-N_RDOF          %create force and stiffness condensed matrixes 
        for y=1:Nn*2-N_RDOF 
         Kcondensed(x,y)= Kglobal(Dof_cond(x),Dof_cond(y)); 
        end 
    Fcondensed(x)=ForceTotal(Dof_cond(x)); 
end 

      
Qc=Kcondensed\Fcondensed; % condensed displacement matrix 

  
Qs=zeros(Nn*2,1); 
count =1; %counter 
for x=1:Nn*2   %create Structure degree of freedom matrix referencing non 

condensed locations 
   if ( any(x==Dof_cond(1,1:Nn*2-N_RDOF))); 
   Qs(x)=Qc(count);  
   count=count+1; 
   end 
end  
%% 
F_Gnodal=zeros(Ne*4,1); 
i=1;j=4; 
z=1;n=4; 
for count=1:Ne  % create matrix of nodal sheer forces and moments for all 

nodes seperatly 
F_Gnodalstep(1:4,1)=K{count}*Qs(i:j,1); 
F_Gnodalstep(1:2)=-F_Gnodalstep(1:2); %negate 1st 2 values 
F_Gnodal(z:n,1)=F_Gnodalstep(1:4,1); 
i=i+2;j=j+2; 
z=z+4;n=n+4; 
end 

  
F_Gglobal(1:2,1)=F_Gnodal(1:2,1); % create global sheer force and moment 

matrix for 1st and last node 
F_Gglobal(Nn*2-1:Nn*2,1)=F_Gnodal(Ne*4-1:Ne*4,1); 

  
if Ne>1 % create global sheer force and moment matrix for  nodes using 

averages from previous node 
    i=3;j=3; 
    for count=1:Ne-1   
        for count2=1:2 
            F_Gglobal(j,1)=(F_Gnodal(i,1)+F_Gnodal(i+2,1))/2; 
            i=i+1; 
            j=j+1; 
        end 
        i=i+2; 
    end 
end 

  
j=1; 
for x=1:Nn 



    displacementv(x)=Qs(j); 
    theta(x)=Qs(j+1); 
    shearforce(x)=F_Gglobal(j,1); 
    Moment(x)=F_Gglobal(j+1,1); 
    j=j+2; 
end 

         

     
figure 
plot(NodeX,displacementv,'.-k') 
title('Nodal Displacement vs Nodal distance') 
xlabel('Nodal distance [m] ') 
ylabel('Nodal Displacement[m] ') 
grid on 
set( gca, 'GridLineStyle', '-' ); 
grid minor 

  
figure 
plot(NodeX,theta,'.-G') 
title('Nodal Displacement vs Nodal angle') 
xlabel('Nodal distance [m] ') 
ylabel('Nodal Angle[radians] ') 
grid on 
set( gca, 'GridLineStyle', '-' ); 
grid minor 

  

  
figure 
plot(NodeX,shearforce,'.-b') 
title('Shear Force vs Nodal distance') 
xlabel('Nodal distance [m] ') 
ylabel('Shear Force[N] ') 
grid on 
set( gca, 'GridLineStyle', '-' ); 
grid minor 

  

  
figure 
plot(NodeX,Moment,'.-r') 
title('Bending Moment vs Nodal distance') 
xlabel('Nodal distance [m] ') 
ylabel('Bending Moment[Nm] ') 
grid on 
set( gca, 'GridLineStyle', '-' ); 
grid minor 

 
 
 
 
 
 
 
 
 



Appendix 2 
 
clear; 
clc; 
%%Case A 
Strain1=[-1.19307e-6 -8.89007e-7 -6.68779e-7 -2.80133e-7 1.78257e-8 3.12404e-

7 6.02816e-7]; 

  
Strain2=[-9.67824e-7 -6.68779e-7 -3.70139e-7 -7.03952e-8 2.28841e-7 5.26396e-

7 8.22676e-7]; 

  
w=.3048; 
dist=0:(2*w/12):w; 

  
%Shear center is where the graph crosses the x-axis 

  
figure(1) %fine mesh 
plot(dist,Strain1) 
title('Shear Stress'); 
xlabel('location'); 
ylabel('Shear'); 
grid on 

  

  
figure(2) %normal mesh 
plot(dist,Strain2) 
grid on 

  

  
axialTop1=[-5.97883e-6 -5.97544e-6 -5.77188e-6 -5.97811e-6 -5.9802e-6 -

5.98193e-6 -5.9825e-6]; 

  
axialBottom1=[6.39622e-6 6.3953e-6 5.47604e-6 6.39446e-6 6.39588e-6 6.39666e-

6 6.3946e-6]; 

  
axialTop2=[-5.76127e-6 -5.77188e-6 -5.78263e-6 -5.79569e-6 -5.80885e-6 -

5.82037e-6 -5.83152e-6]; 

  
axialBottom2=[5.46903e-6 5.47604e-6 5.48229e-6 5.48693e-6 5.49184e-6 

5.50109e-6 5.51094e-6]; 

  
figure(3) 
plot(dist,axialTop1) 
xlabel('Distance from point 1') 
ylabel('Axial Strain') 
title('Distance vs Axial Strain Measured at Strain Gauge 1 - Fine') 

  
figure(4) 
plot(dist,axialTop2) 
xlabel('Distance from point 1') 
ylabel('Axial Strain') 
title('Distance vs Axial Strain Measured at Strain Gauge 1 - Normal') 

  
figure(5) 



plot(dist,axialBottom1) 
xlabel('Distance from point 1') 
ylabel('Axial Strain') 
title('Distance vs Axial Strain Measured at Strain Gauge 2 - Fine') 

  
figure(6) 
plot(dist,axialBottom2) 
xlabel('Distance from point 1') 
ylabel('Axial Strain') 
title('Distance vs Axial Strain Measured at Strain Gauge 2 - Normal') 

  
%%Case B 

  
cases=[1:1:4]; 
disp=[9.0312e-4 1.20814e-3 1.2081e-3 1.2611e-4]; 
mis=[2.7248e8 3.5749e8 3.6195e8 4.7395e8]; 

  
figure(7) 
plot(cases,disp,'bo') 
xlabel('Case') 
ylabel('Displacement [m]') 
title('Maximum Displacement for Each Case') 

  
figure(8) 
plot(cases,mis,'bo') 
xlabel('Case') 
ylabel('Von Mises Stress [N/m^2]') 
title('Maximum Von Mises Stress for Each Case') 
axis ([0 5 2e8 5e8]) 

 


